
RESEARCH ARTICLE

The Community Simulator: A Python package

for microbial ecology

Robert MarslandID
1*, Wenping Cui1,2, Joshua Goldford3, Pankaj Mehta1

1 Department of Physics, Boston University, Boston, Massachusetts, United States of America, 2 Department

of Physics, Boston College, Chestnut Hill, Massachusetts, United States of America, 3 Bioinformatics

Program, Boston University, Boston, Massachusetts, United States of America

* marsland@bu.edu

Abstract

Natural microbial communities contain hundreds to thousands of interacting species. For

this reason, computational simulations are playing an increasingly important role in microbial

ecology. In this manuscript, we present a new open-source, freely available Python package

called Community Simulator for simulating microbial population dynamics in a reproducible,

transparent and scalable way. The Community Simulator includes five major elements:

tools for preparing the initial states and environmental conditions for a set of samples, auto-

matic generation of dynamical equations based on a dictionary of modeling assumptions,

random parameter sampling with tunable levels of metabolic and taxonomic structure, paral-

lel integration of the dynamical equations, and support for metacommunity dynamics with

migration between samples. To significantly speed up simulations using Community Simula-

tor, our Python package implements a new Expectation-Maximization (EM) algorithm for

finding equilibrium states of community dynamics that exploits a recently discovered duality

between ecological dynamics and convex optimization. We present data showing that this

EM algorithm improves performance by between one and two orders compared to direct

numerical integration of the corresponding ordinary differential equations. We conclude by

listing several recent applications of the Community Simulator to problems in microbial ecol-

ogy, and discussing possible extensions of the package for directly analyzing microbiome

compositional data.

Background

The last decade has seen a renewed interest in the study of microbial communities. Different

environments can harbor diverse communities containing from hundreds to thousands of dis-

tinct microbes [1, 2]. A central goal of community ecology is to understand the ecological pro-

cesses that shape these diverse ecosystems. The diversity and function of ecosystems are

affected by a wide variety of factors including energy and resource availability [3, 4], ecological

processes such as competition between species [5–8] and stochastic colonization [9–12].

Microbial ecosystems also present several new challenges specific to microbes that are not

usually addressed in the theoretical ecology literature. Classical models of community ecology

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Marsland R, Cui W, Goldford J, Mehta P

(2020) The Community Simulator: A Python

package for microbial ecology. PLoS ONE 15(3):

e0230430. https://doi.org/10.1371/journal.

pone.0230430

Editor: Isaac Klapper, Temple University, UNITED

STATES

Received: November 19, 2019

Accepted: February 28, 2020

Published: March 24, 2020

Copyright: © 2020 Marsland et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work was supported by NIH NIGMS

grant 1R35GM119461 and a Simons Investigator

in the Mathematical Modeling of Living Systems

(MMLS) award to PM. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-5007-6877
https://doi.org/10.1371/journal.pone.0230430
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230430&domain=pdf&date_stamp=2020-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230430&domain=pdf&date_stamp=2020-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230430&domain=pdf&date_stamp=2020-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230430&domain=pdf&date_stamp=2020-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230430&domain=pdf&date_stamp=2020-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230430&domain=pdf&date_stamp=2020-03-24
https://doi.org/10.1371/journal.pone.0230430
https://doi.org/10.1371/journal.pone.0230430
http://creativecommons.org/licenses/by/4.0/

(especially niche-based theories) have traditionally considered ecosystems with a few species

and resources [13, 14]. However, microbial ecosystems often have thousands of species and

hundreds of small molecules that can be consumed. It is unclear how the intuitions and results

from these low-dimensional settings scale to microbiomes. It is known that diverse ecosystems

can exhibit distinct emergent features and phase transitions not found in low-dimensional sys-

tems [15–18]. Furthermore, classical ecological models usually assume a strict trophic layer

separation, ignoring cross-feeding and syntrophy—the consumption of metabolic byproducts

of one species by another species. It is now becoming clear that cross-feeding is a central com-

ponent of microbial ecosystems [19–22] and any ecological model must account for this

phenomenon.

For these reasons, there is a need for new ways of understanding microbial ecosystems.

One powerful approach for understanding complex systems is through simulations. However,

simulating diverse microbial ecosystems presents some unique challenges. First, most ecosys-

tems are mathematically represented by complicated coupled, non-linear ordinary differential

equations. Simulating these systems in ecosystems with hundreds to thousands of species and

metabolites becomes computationally difficult and time-consuming. Second, these dynamical

models have thousands of parameters. One needs a principled and biologically realistic way of

choosing such parameters. Third, explaining real data requires incorporating ecological pro-

cesses such as stochastic colonization that play an important role in shaping community struc-

ture and dynamics. Finally, we need to be able to incorporate spatial and population level

structures in an experimentally realistic way.

Recently, we presented a powerful minimal model of microbial ecosystems that addresses

these concerns [20, 22]. Furthermore, we have found a mathematical mapping between eco-

logical dynamics and constrained optimization that can be used to accelerate simulations of

many large ecosystems [23, 24]. In this paper, we present a new open-source Python package

for microbial ecology called Community Simulator that implements these theoretical

advances, making it easy to simulate complex microbial communities in a variety of experi-

mentally relevant settings.

Implementation

The architecture of Community Simulator is inspired by the parallel experiments commonly

performed with 96-well plates, as illustrated in Fig 1. The central object of the package is a

Community class, whose instances are initialized by specifying the initial population sizes

and resource concentrations for each parallel “well,” along with the functions and parameters

that define the population dynamics. The initial state, dynamical equations and parameters

can all be generated automatically from a dictionary of modeling assumptions, or custom-built

by the user. Each instance of this class represents an n-well plate, containing n well-mixed,

non-interacting communities. Once initialized, the state of the plate can be updated in one of

two ways. Propagate(T) propagates the system for a time T by integrating the supplied

dynamical equations, and Passage(f) builds a replacement plate by adding a fraction fμν of

the contents of each old well ν to each new well μ. In the final section below, we will discuss a

third method SteadyState(), which can find the fixed point of the dynamics in some

models without numerical integration.

The package also includes some functions for analysis of the simulation results, including a

variety of measures of alpha diversity, as well as extraction of energy flux networks, effective

interaction coefficients, and sensitivities to parameter perturbations.

In the following sections, we describe the functionality of each element of the package in

turn. We particularly focus on the tools for generating the dynamical equations and the

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 2 / 18

https://doi.org/10.1371/journal.pone.0230430

parameter sets, explaining how increasing levels of biological realism can be progressively

incorporated. Each section has a corresponding segment in the Jupyter notebook

Tutorial.ipynb included with the Community Simulator package. This notebook con-

tains all the code and parameters for generating the figures found in the paper.

Constructing the initial state

The state of a Community instance is contained in a pair of Pandas data frames (https://

pandas.pydata.org/, [25]), one of size Stot × n for the microbial population sizes Ni (i = 1, 2, . . .

Stot) and one of size M × n for the resource abundances Rα (α = 1, 2, . . .M). Each row of the

data frame corresponds to a different species or resource type, while each column corresponds

to a different well.

The function MakeInitialState automatically creates data frames N0,R0 of initial

population sizes and resource abundances corresponding to some common experimental sce-

narios, specified in a dictionary of assumptions. The initial species abundances are supplied by

a stochastic process that is agnostic to species identity. This roughly captures the various dis-

persal mechanisms including mechanical disturbances and turbulent flow that convey micro-

bial cells to new environments. Specifically, random subsets of S species from the regional pool

of size Stot are supplied to the n wells of the plate. The population sizes of these species are set

to 1 by default, and can be rescaled afterwards if desired.

Initial resource abundances are generated by MakeInitialState based on a Biolog

plate scenario, where each well is supplied with a single carbon source. The assumptions dic-

tionary specifies the identity and quantity of the carbon source for each well. Arbitrarily

Fig 1. The five elements of the Community Simulator. The core object of the Community Simulator is a virtual n-well plate, holding n
independent well-mixed microbial communities. This plate has three properties: its current state, a dynamical law for the population dynamics,

and a set of parameters. Once a plate is initialized, two actions can be performed on it: propagation in time using the given dynamical law, and

passaging of given fractions of the contents of each well to fresh wells on a replacement plate. For some models, the equilibrium state of the

population dynamics can also be found directly using a new algorithm summarized in Fig 5 below.

https://doi.org/10.1371/journal.pone.0230430.g001

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 3 / 18

https://pandas.pydata.org/
https://pandas.pydata.org/
https://doi.org/10.1371/journal.pone.0230430.g001
https://doi.org/10.1371/journal.pone.0230430

chosen resource abundances can of course be directly supplied to the Community instance

instead, to simulate more general conditions.

To capture coarse-grained metabolic structure, the M resources can be assigned to T classes

(e.g. sugars, amino acids, etc.), each with MA resources where A = 1, . . .T and ∑A MA = M.

These class labels become functionally relevant by biasing the sampling of consumption prefer-

ences and byproduct stoichiometry, as will be described below. Likewise the Stot species can be

assigned to F families, with F� T, and each family preferentially consuming resources from a

different resource class. A generalist family can also be included, with Sgen species and no pre-

ferred resource class, so that Sgen + ∑A SA = Stot.

Generating the dynamical equations

Instances of the Community class can be initialized with any set of differential equations,

which are specified as functions of the system state that return the time derivatives dNi/dt and

dRα/dt. The package includes tools for constructing these functions automatically based on a

dictionary of assumptions. These built-in dynamics are based on the recently introduced

Microbial Consumer Resource Model (MicroCRM) [20, 22] illustrated in Fig 2, which

Fig 2. Constructing the dynamical law. The MicroCRM models the growth and metabolism of S microbial species in terms of

energy fluxes J inia ; Joutib ; J
grow
i , mediated by import, export and chemical transformation of M substitutable resources. Specification of

the resource dynamics and of the dependence of import rates on the resource concentrations requires three additional modeling

choices, represented by the three arrows. First, the intrinsic dynamics of the resources can either be a linear model of a fixed external

input flux and dilution rate, or a logistic model of self-renewing resources, which was employed in MacArthur’s original CRM. The

left-hand plot shows the supply rate as a function of resource concentration for these two options. Second, the import rates from the

different resource types can be independent, or globally regulated in such a way as to preferentially consume the resource that is

currently most abundant. The middle plot shows timeseries of consumer and resource abundances in the presence and absence of

regulation, with all other parameters held fixed. Third, the dependence of import rates on resource concentration can take a

linear (Type-I), Monod (Type-II) or Hill (Type-III) form. The right-hand plot shows the growth rate as a function of resource

concentration for these three choices.

https://doi.org/10.1371/journal.pone.0230430.g002

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0230430.g002
https://doi.org/10.1371/journal.pone.0230430

generalizes the classic consumer resource model of MacArthur and Levins [6] to the microbial

context by allowing organisms to release metabolic byproducts. Table 1 lists all the parameters

of this family of models, along with the corresponding units.

In order to provide a general-purpose set of models that produce physically reasonable

results, the MicroCRM assumes that all resource types are substitutable, and can all be con-

verted to a common energy currency. This allows us to enforce energy conservation, prevent-

ing communities from bootstrapping themselves to large population sizes using metabolic

secretions with no external resource supply. It also eliminates the need to specify in detail how

each resource type interacts with all the others within the consumer metabolism. If such inter-

actions are important for capturing a given experimental phenomenon, the built-in dynamics

cannot be used, and custom functions must be written for dNi/dt and dRα/dt. The tutorial

notebook included with the package contains an example of this kind, using Liebig’s Law of

the Minimum to model phytoplankton dynamics.

Energy fluxes and growth rates. We begin by defining an energy flux into a cell Jin, an

energy flux that is used for growth Jgrowth, and an outgoing energy flux due to byproduct secre-

tion Jout. Energy conservation requires

J in ¼ Jgrowth þ Jout ð1Þ

for any reasonable metabolic model. It is useful to denote the input and output energy fluxes

that are consumed/secreted in metabolite β by J in
b

and Jout
b

respectively. We can define corre-

sponding mass fluxes by

nout
b
� Jout

b
=wb ð2Þ

and

nin
b
� J in

b
=wb ð3Þ

where the conversion factor wβ measures the energy density of metabolite β. In general, all

these fluxes depend on the consumer species under consideration, and will carry an extra

Roman index i indicating the species.

We assume that a fixed quantity mi of power per cell is required for maintenance of

species i, and that the per-capita growth rate is proportional to the remaining energy flux

(Jgrowth − mi), with proportionality constant gi. Under these assumptions, the time-evolution of

Table 1. Parameters and units for the Microbial Consumer Resource Model.

Ni population density of species i (individuals/volume)

Rα Concentration of resource α (mass/volume)

ciα Uptake rate per unit concentration of resource α by species i (volume/time)

Dαβ Fraction of byproducts from resource β converted to α (unitless)

gi Conversion factor from energy uptake to growth rate (1/energy)

wα Energy content of resource α (energy/mass)

lα Leakage fraction for resource α (unitless)

mi Minimal energy uptake for maintenance of species i (energy/time)

R0
a

Intrinsic equilibrium abundance of resource α (mass/volume)

τα Timescale for externally supplied resource turnover (time)

rα Rate of resource self-renewal (volume/mass/time)

n Hill coefficient for functional response (unitless)

σmax Maximum input flux (mass/time)

nreg Hill coefficient for metabolic regulation (unitless)

https://doi.org/10.1371/journal.pone.0230430.t001

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0230430.t001
https://doi.org/10.1371/journal.pone.0230430

the population size Ni of species i can be modeled using the equation

dNi

dt
¼ giNiðJ

growth
i � miÞ: ð4Þ

We can model the resource dynamics by functions of the form

dRa

dt
¼ haðRaÞ �

X

j

Njn
in
ja þ

X

j

Njn
out
ja ; ð5Þ

where the function hα describes the resource dynamics in the absence of consumers. The Com-

munity Simulator has two kinds of default resource dynamics: externally supplied and self-

renewing. For externally supplied resources, we take a linearized form of the dynamics:

hexternal
a
ðRaÞ ¼ t

� 1
a
ðR0

a
� RaÞ ð6Þ

while for self-renewing we take a logistic form

hself � renewing
a

ðRaÞ ¼ raRaðR0
a
� RaÞ: ð7Þ

Finally, the intrinsic resource dynamics can also be turned off, with hoff
a
¼ 0, to simulate

resource depletion in a closed community with no resupply.

Input fluxes and output partitioning. We now specify the form of the input fluxes nin
b

,

and of the relationships among input, output and growth that define the metabolism. We start

by assuming that all resource utilization pathways are independent, resulting in input fluxes of

the form

ninia ¼ sðciaRaÞ ð8Þ

where σ is a single-valued function encoding the relationship between resource availability and

uptake rates. The community simulator implements three kinds of response functions: Type-I,

linear response functions where

sIðxÞ ¼ x; ð9Þ

a Type-II saturating Monod function,

sIIðxÞ ¼
x

1þ x
smax

ð10Þ

and a Type-III Hill or sigmoid-like function

sIIIðxÞ ¼
xn

1þ xn

smax

; ð11Þ

where n> 1.

To obtain the output fluxes, we define a leakage fraction l such that

Jout ¼ lJin: ð12Þ

We allow different resources to have different leakage fractions lα. A direct consequence of

energy conservation (Eq (1)) is that

Jgrowthi ¼
X

a

ð1 � laÞJ
in
ia ¼

X

a

ð1 � laÞwasðciaRaÞ ð13Þ

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0230430

Finally, we denote by Dβα the fraction of the output energy that is contained in metabolite β
when a cell consumes α. Note that by definition ∑β Dβα = 1. The total energy output in metabo-

lite β is thus

Joutib ¼
X

a

DbalaJ
in
ia ¼

X

a

DbalawasðciaRaÞ: ð14Þ

This also yields

noutib ¼
X

a

Dbala
wa

wb

sðciaRaÞ ð15Þ

We are now in position to write down the full dynamics in terms of these quantities:

dNi

dt
¼ giNi

X

a

ð1 � laÞwasðciaRaÞ � mi

" #

dRa

dt
¼ haðRaÞ �

X

j

NjsðcjaRaÞ þ
X

jb

NjsðcjbRbÞ Dab

wb

wa

lb

� � ð16Þ

Notice that when σ is Type-I (linear) and lα = 0 for all α (no leakage or byproducts), this

reduces to MacArthur’s original model [6].

Metabolic regulation. The package can also generate dynamics for active metabolic regu-

lation, which allocates a higher fraction of import capacity to nutrients with higher available

energy flux. This regulation is implemented through a series of weight functions for resource α
that reflect how much of the utilizable energy in the environment is in resource α

uin� w
ia ¼

ðwaciaRaÞ
nreg

P
b
ðwbcibRbÞ

nreg ; ð17Þ

with nreg a Hill coefficient that tunes steepness. Another option is to regulate based on the frac-

tion of biomass contained in resource α,

uin� n
ia ¼

ðciaRaÞ
nreg

P
b
ðcibRbÞ

nreg ð18Þ

For the metabolically regulated model, we define the input fluxes by

nin
b
¼ uin

ibsðcibRbÞ ð19Þ

Then, we can follow the exact same procedure as above. This yields the equations

dNi

dt
¼ giNi

X

a

ð1 � laÞwau
in
iasðciaRaÞ � mi

" #

dRa

dt
¼ haðRaÞ �

X

j

Nju
in
jasðcjaRaÞ þ

X

jb

Nju
in
jbsðcjbRbÞ lbDab

wb

wa

� � ð20Þ

These equations are generated by the functions MakeConsumerDynamics and

MakeResourceDyanamics, based on the user’s specification of the resource replenish-

ment mode h, the response function σ, and the regulation mode u.

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0230430

Sampling the parameters

The MicroCRM contains a large number of parameters: the Stot-dimensional vectors gi and mi,

the M-dimensional vectors R0
a
; la;wa and τα or rα, the Stot × M consumer preference matrix ciα

and the M × M metabolic matrix Dαβ. Some modeling choices require a small number of addi-

tional parameters: the maximal uptake rate σmax for Type-II and Type-III growth, and the

exponents n for Type-III growth and nreg for metabolic regulation. A dictionary containing all

these parameters must be supplied to the Community instance upon initialization. A list of

dictionaries may be supplied instead, to allow different wells to have different parameters.

The package contains a function MakeMatrices for generating the two matrices, which

contain most of the ecological structure, based on a dictionary of modeling assumptions sum-

marized in Table 2. The output of this function is illustrated in Fig 3 and described in detail

below.

Consumer preferences ciα. We choose consumer preferences ciα as follows. As stated ear-

lier, we assume that each specialist family has a preference for one resource class A (where

A = 1. . .F) with 0� F� T, and we denote the consumer coefficients for this family by cA
ia. We

also consider generalists that have no preferences, with consumer coefficients cgenia . The cA
ia can

be drawn from one of three probability distributions: (i) a Normal/Gaussian distribution, (ii) a

Gamma distribution (which ensure positivity of the coefficients), and (iii) a Bernoulli distribu-

tion with binary preference levels. Fig 3 shows examples of all three models.

The Gaussian model is parameterized in terms of the mean μc = h∑α ciαi and variance

s2
c ¼ varð

P
a
ciaÞ of the total consumption capacity, and a parameter q that controls how spe-

cialized each family is for its preferred resource class. In the generalist family, the mean and

variance of ciα are the same for all resources, and are given by

hcgenia i ¼
mc

M
ð21Þ

hðdcgenia Þ
2
i ¼

s2
c

M
: ð22Þ

where dcgenia ¼ cgenia � hc
gen
ia i is the deviation from the mean value. The specialist families sample

Table 2. Definitions of global parameters used for constructing random ecosystems. Values of these parameters are

supplied as a Python dictionary to the function MakeMatrices, which generates randomly sampled consumer pref-

erence and metabolic matrices.

M Number of resources

T Number of resource classes

Stot Number of microbial species in regional pool

F Number of specialist families

S Number of microbial species initially present in each local community

μc Mean sum over a row of the preference matrix ciα
σc Standard deviation of sum over a row for Gaussian or Gamma ciα
c0 Low consumption level for Binary ciα
c1 High consumption level for Binary ciα
q Fraction of consumption capacity allocated to preferred resource class

s Sparsity of metabolic matrix

fw Fraction of secreted byproducts allocated to “waste” resource class

fs Fraction of secreted byproducts allocated to same resource class

https://doi.org/10.1371/journal.pone.0230430.t002

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0230430.t002
https://doi.org/10.1371/journal.pone.0230430

from a distribution with a larger mean for resources in their preferred class:

hcA
iai ¼

mc
M 1þ

M � MA

MA
q

� �

; if a 2 A

mc
M ð1 � qÞ; otherwise;

8
>><

>>:

ð23Þ

where MA is the number of resources in class A and A is the set of resource indices in class A.

The variances are likewise larger for the preferred class:

hðdcA
iaÞ

2
i ¼

s2
c

M 1þ
M � MA

MA
q

� �

; if a 2 A

s2
c

M ð1 � qÞ; otherwise:

8
>><

>>:

ð24Þ

This makes it possible to construct pure specialist families with no off-target consumption

by setting q = 1. Note that this is different from the original version of this model in [22],

where all the variances were chosen to be identical.

We also consider the case where consumer preferences are drawn from Gamma distribu-

tions, which guarantee that all coefficients are positive. Since the Gamma distribution only has

two parameters, it is fully determined once the mean and variance are specified. We parame-

terize the mean and variance for this model in the same way as for the Gaussian model.

Fig 3. Sampling parameters and adding metabolic structure. (a) Sampling the consumer preference matrix ciα.

Each row corresponds to a different microbial species, and the value of each entry in the row specifies the preference

level of that species for a given resource. An example of each of the three sampling choices is shown, with white pixels

representing ciα = 0 and darker pixes representing larger values. The examples have F = 3 consumer families with

specialism level q = 0.9, each with SA = 25 species, plus a generalist family with Sgen = 25 species. (b) Sampling the

metabolic matrix Dαβ. Each column represents the allocation of output fluxes resulting from metabolism of a given

input resource. This example has T = 3 resource classes, and an effective sparsity s = 0.05. (c) Diagram of three-tiered

metabolic structure. A fraction fs of the output flux is allocated to resources from the same resource class as the input,

while a fraction fw is allocated to the “waste” class (e.g., carboxylic acids). In the example of the previous panel,

allocation fractions were fs = fw = 0.49.

https://doi.org/10.1371/journal.pone.0230430.g003

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0230430.g003
https://doi.org/10.1371/journal.pone.0230430

In the binary model, there are only two possible values for each ciα: a low level
c0

M and a high

level
c0

M þ c1. The elements of cA
ia are given by

cA
ia ¼

c0

M
þ c1Xia; ð25Þ

where Xiα is a binary random variable that equals 1 with probability

pA
ia ¼

mc
Mc1

1þ
M � MA

MA
q

� �

; if a 2 A

mc
Mc1
ð1 � qÞ; otherwise

8
>><

>>:

ð26Þ

for the specialist families, and

pgen
ia ¼

mc

Mc1

ð27Þ

for the generalists. Note that the variance in each family is hðdcA
iaÞ

2
i ¼ c2

1
pA

iað1 � pA
iaÞ � c2

1
pA

ia for

large M, which depends on q in the same way as the variances in the Gaussian case.

Metabolic matrix Dαβ. We choose the metabolic matrix Dαβ according to a three-tiered

secretion model illustrated in Fig 3. The first tier is a preferred class of ‘waste’ products, such

as carboyxlic acids for fermentative and respiro-fermentative bacteria, with Mw members. The

second tier contains byproducts of the same class as the input resource. For example, this

could be attributed to the partial oxidation of sugars into sugar alcohols, or the antiporter

behavior of various amino acid transporters. The third tier includes everything else. We

encode this structure in Dαβ by sampling each column β of the matrix from a Dirichlet distri-

bution with concentration parameters dαβ that depend on the byproduct tier, so that on aver-

age a fraction fw of the secreted flux goes to the first tier, while a fraction fs goes to the second

tier, and the rest goes to the third. The Dirichlet distribution has the property that each sam-

pled vector sums to 1, making it a natural way of randomly allocating a fixed total quantity

(such as the total secretion flux from a given input). To write the expressions for these parame-

ters explicitly, we let A(α) represent the class containing resource α, and let w represent the

‘waste’ class. We also introduce a parameter s that controls the sparsity of the reaction network,

ranging from a dense network with all-to-all connection when s! 0, to maximal sparsity with

each input resource having just one randomly chosen output resource as s! 1. With this

notation, we have

Dab ¼ Dirðd1b; d2b; d3b; � � � ; dMbÞa ð28Þ

dab ¼

fw
sMw
; if AðbÞ 6¼ w and AðaÞ ¼ w

fs
sMAðbÞ

; if AðbÞ 6¼ w and AðaÞ ¼ AðbÞ

1� fs � fw
sðM� MAðbÞ� MwÞ

; if AðbÞ;AðaÞ 6¼ w and AðaÞ 6¼ AðbÞ

fwþfs
sMw

; if AðbÞ ¼ w and AðaÞ ¼ w

1� fw � fs
sðM� MwÞ

; if AðbÞ ¼ w and AðaÞ 6¼ w:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð29Þ

The final two lines handle the case when the ‘waste’ type is being consumed. For these col-

umns, the first and second tiers are identical. This led to an ambiguity in the expression

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 10 / 18

https://doi.org/10.1371/journal.pone.0230430

presented in the Supporting Information of [22], which we have now clarified by treating this

case separately.

Propagation in time

Once an instance of the Community class is initialized, its state can be propagated forward

in time using the Propagate method, as illustrated in Fig 1. Since the dynamical equations

and parameters were supplied at initialization, the only required argument for this method is

the time T. When the method is invoked, the state and parameters for each well are sent to

different CPU’s (as many as are available) using the Pool.map function from the

multiprocessing module in the Python standard library. Then the dynamical equations

are integrated using the odeint function from SciPy, which calls the LSODA solver from the

FORTRAN library ODEPACK [26, 27].

If the initial population size of a species equals zero, but its per-capita growth rate is positive

under current environmental conditions, the limited precision of any numerical solver will

enable that species to spontaneously invade the community. To prevent this from happening,

the Propagate method comes with an option compress_species (set to True by

default), which reduces the dimensionality of the state and parameters before invoking the

solver by removing all references to extinct species. Compression requires deciding whether

each dimension of each parameter array corresponds to species or resources. This information

is built in to the package for the MicroCRM, so c, D,w, g, m, l, R0, tau and r are all automati-

cally handled correctly according to their definitions in that context. If custom dynamics are

used, a dictionary of parameter dimensions must be supplied to the optional argument

dimensions of Community when the instance is initialized, listing which parameters are

of length S, length M, or of shape SxM, SxS, or MxM, respectively.

Passaging to fresh plates

The second method that can be invoked on a Community instance is Passage, which simu-

lates pipetting of cultures to fresh wells in a typical 96-well plate experiment. The only required

argument for Passage is a two-dimensional array f, whose elements fμν specify the fraction

of the contents of well ν from the old plate that should be transfered to well μ on the new plate.

The method also contains an option refresh_resource, set to True by default, that sup-

plies the new plate with the same initial resource concentrations as the original one. This is the

most direct way of simulating actual 96-well plate experiments, where the resources are resup-

plied in discrete intervals at each passaging step.

This method facilitates simulation of various kinds of mixing or coalescence experiments,

as well as metacommunity dynamics of weakly coupled local communities. Fig 4 illustrates

how this feature can capture coarse-grained spatial structure, following an experimental proto-

col developed for mimicking range expansions in 96-well plates [28].

In addition, passaging helps to stabilize long simulations, and simulate demographic noise,

by setting all cell counts to integer values. The species abundances Ni are converted to absolute

cell counts through a conversion factor scale, which is by default set to 106. Then the new

integer cell counts are generated by multinomial sampling based on the average number of

cells ∑ν fμν(Ni)ν of species i transferred to well μ. One source of numerical instability in ecologi-

cal models is the exponentially small values reached by population sizes headed for extinction.

The multinomial sampling ensures that these population sizes are fixed at zero when they

become significantly smaller than 1 in absolute units. Thus a simple way of avoiding instability

in a continuously resupplied chemostat model is to periodically call Passage with f set to

the identity matrix and refresh_resource set to False.

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0230430

Since the most common experiments involve many iterations of identical Passage and

Propagate steps, the package also includes a method RunExperiment(f,T,np),

which applies a given transfer matrix f and propagation time T for np iterations, saving a

snapshot of the plate after each propagation step. If passaging is being used simply to stabilize

the integration as discussed above, and not to simulate a batch culture setting, then the value

of T does not affect the results (as long as it is short enough to successfully eliminate instabili-

ties). In this case, this variable mainly serves to control the time-resolution of the resulting

timeseries.

Finding equilibrium points with convex optimization and expectation

maximization

In many experimental contexts, one is interested in the stable community structure reached

after a long period of constant environmental conditions. Numerical integration of the dynam-

ical equations is an inefficient way to identify these equilibrium points. When the species

diversity and number of resource types are high, the equations typically contain complex tran-

sient dynamics spanning a large range of time scales. This transient behavior is often irrelevant

to the identification of the final equilibrium point, and wastes significant computation time.

For a typical implementation of the MicroCRM with Type-I response and a 1, 280 × 1, 280

binary consumer matrix, integrating to the steady state takes about 37 hours on standard

Fig 4. Propagating and passaging. (a) System state after successive applications of the method to a plate with n = 100 wells, with a

single externally supplied resource (blue). Each column of a panel represents a different well, and the height of each colored patch

represents the abundance of a different consumer species or resource type. Each panel is normalized so that the sample with the

largest total biomass or total resource concentration spans the entire panel. As time passes, the resources become more diverse due

to the generation of metabolic byproducts, while the consumers become less diverse through competitive exclusion. (b) Modeling

spatial structure with a stepping stone model. At each time step, each cell in a given well can migrate to neighboring wells with

probability m. (c) Implementation of stepping stone model in a 96-well plate. Every day, the communities are passaged to fresh wells,

with a fraction f0(1 − m) transferred to the corresponding position in the new set of wells, and f0 m divided equally between the two

nearest neighbors, where f0 is an overall dilution factor. (d) Transfer matrix f implementing the stepping stone protocol. (e)
Simulated range expansion using successive applications of the and methods, with the transfer matrix from the previous panel. See

the Jupyter notebook included with the package for all simulation details.

https://doi.org/10.1371/journal.pone.0230430.g004

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0230430.g004
https://doi.org/10.1371/journal.pone.0230430

hardware. The computation time appears to scale asymptotically as M4 when the number of

species S and the number of resources M are changed simultaneously, as shown in Fig 6.

To address this problem, we have developed an algorithm for identifying equilibrium points

directly, without integration through the transient. This algorithm is implemented in Commu-

nity Simulator as the method SteadyState, and is illustrated in Fig 5. Under the same test

conditions, this algorithm converges between one and two orders of magnitude faster than

numerical integration, as shown in Fig 6, facilitating rapid hypothesis evaluation and iteration

Fig 6. Performance of EM algorithm versus ODE integration. The steady state of the MicroCRM was computed by direct ODE

integration and with our new EM algorithm for a range of values of the number of resource types M. The initial number of

species S was set equal to M, and a single resource type was externally supplied with intrinsic fixed point R0
1
¼ 10M (R0

i ¼ 0 for

all i> 1). The absolute error tolerance of the integrator was set to 10−4, and the convergence tolerance for the EM algorithm was

set to δ = 10−7. See ‘scripts’ folder in the ‘EM-algorithm’ branch of the GitHub repository for the rest of the parameters, which

were held fixed for all simulations. (a) Total computation time for 10 realizations. (b) Final root-mean-square per-capita

deviation of the growth rate from zero (‘Error’) over all surviving species in all 10 samples.

https://doi.org/10.1371/journal.pone.0230430.g006

Fig 5. An expectation-maximization algorithm for finding noninvadable stationary states. (a) Noninvadable states by definition

can only exist in the regionO of resource space where the growth rate dNi/dt of each species i is zero or negative. Here, the blue and

orange lines represent the combinations of resource abundances leading to zero growth rate for two different consumer species, so

the noninvadable region is the space beneath both of the lines. Within this region, a recently discovered duality implies that the

stationary state R� locally minimizes the dissimilarity d(R0, R) with respect to the fixed point R0 of the intrinsic environmental

dynamics [23, 24]. (b) Metabolic byproducts move the relevant unperturbed state from R0 (gray ‘x’) to ~R0ðRÞ (black ‘x’), which is

itself a function of the current environmental conditions. Dotted contour lines represent dð~R0ðR�Þ;RÞ, and arrows are two

trajectories of the population dynamics starting from the unperturbed environmental state with two different sets of initial consumer

population sizes. See main text and Appendix for model details and parameters. (c) Pseudocode for self-consistently computing R�

and ~R0ðR�Þ, which is identical to standard expectation-maximization algorithms employed for problems with latent variables in

machine learning.

https://doi.org/10.1371/journal.pone.0230430.g005

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 13 / 18

https://doi.org/10.1371/journal.pone.0230430.g006
https://doi.org/10.1371/journal.pone.0230430.g005
https://doi.org/10.1371/journal.pone.0230430

in large ecosystems. Note that while all other features of the Community Simulator depend

only on packages included with a standard Anaconda installation (https://www.anaconda.

com/), SteadyState additionally requires prior installation of a convex optimization pack-

age called CVXPY (https://www.cvxpy.org/).

The algorithm exploits a recently discovered duality between consumer resource models

and constrained optimization over resource space [23, 24], which generalizes a minimization

principle originally identified by MacArthur in the context of his original Consumer Resource

Model [6]. This duality applies to a wide class of consumer-resource type models, requiring

only that the environmentally mediated interactions between pairs of consumer species are

symmetric [24].

For models in this class, it was shown that the vector of resource abundances R� in every

stable equilibrium state locally minimizes a measure d(R0, R) of the dissimilarity between the

current resource abundances R and the supply point R0 (defined in general by haðR0
a
Þ ¼ 0),

subject to the constraint that all consumer growth rates are zero or negative (dNi/dt� 0 for all

i). Instances of the MicroCRM with Type I resource consumption, no metabolic regulation

and lα = 0 fall into this class. For externally supplied resources, d turns out to be a weighted

Kullback-Leibler (KL) divergence:

dexternalðR0;RÞ ¼
X

b

wbt
� 1

b
R0

b
ln

R0
b

Rb

� ðR0

b
� RbÞ

" #

ð30Þ

while for self-renewing resources, it is a weighted Euclidean distance [24]:

dself � renewingðR0;RÞ ¼
X

b

wbrbðR
0

b
� RbÞ

2
: ð31Þ

The equilibrium consumer populations N�i are the Lagrange multipliers that enforce the

constraints. For models with Type-I response, the non-invadable region is convex, allowing

for efficient solution of the optimization problem using the Python package CVXPY [29, 30].

The duality does not strictly apply to other variants of the MicroCRM. In particular,

byproduct secretion breaks the symmetry of the effective interactions between consumers

whenever lα> 0 for some resource α. The duality can be recovered, however, if the equilibrium

point R0 of the intrinsic resource dynamics is changed to a new value ~R0ðR�Þ, which accounts

for the extra resources produced by the consumer species when the system is at its equilibrium

state R� [24]. This accounting can be done in a variety of ways that all successfully recover the

duality, with varying degrees of computational efficiency. The currently implemented form is

~R0
a
ðR�Þ ¼ R0

a
þ
X

b6¼a

Q� 1
ab

Q� 1
bb

ðR0

b
� R�

b
Þ ð32Þ

where

Qab ¼ dab � lbDab

wb

wa

ð33Þ

and Q� 1
ab

are the elements of the matrix inverse of Qαβ, satisfying
P

b
Q� 1
ab

Qbg ¼ dag. With these

definitions, one can show that the MicroCRM with Type I consumption and no regulation

minimizes the objective function

dbyproductsð~R0;RÞ ¼
X

b

~wbt
� 1

b
~R0

b
ln

~R0
b

Rb

� ð~R0

b
� RbÞ

" #

ð34Þ

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 14 / 18

https://www.anaconda.com/
https://www.anaconda.com/
https://www.cvxpy.org/
https://doi.org/10.1371/journal.pone.0230430

where

~wa ¼ Q� 1
aa
ð1 � laÞt� 1

a
wa: ð35Þ

To find R�, one must now self-consistently solve the following equation:

R� ¼ argmin
R

dð~R0ðR�Þ;RÞ: ð36Þ

The structure of this problem is mathematically equivalent to a standard task in machine

learning, where one attempts to infer model parameters from partial data [31]. These parame-

ters θ specify a multivariate probability distribution p(y|θ) for a set of measurements y. A stan-

dard way of estimating the parameters is to compute the values ŷ that maximize the likelihood

of the data: ŷ ¼ argmax
y

pðyjyÞ. But if one actually has access to only a subset x of the mea-

surement results, then the values z of the remaining quantities must also be estimated in order

to perform this optimization. Ideally, one would use the statistical model with the optimal

parameters ŷ for this task. In the simplest case, where the value of z can be inferred with cer-

tainty given θ and x, this results in the following self-consistency equation:

ŷ ¼ argmax
y

pðx; zðŷÞjyÞ: ð37Þ

This is identical in form to Eq 36, where the parameters θ become the resource concentra-

tions R and the estimated latent variables z become the effective unperturbed state ~R0. The

observed data x become the model parameters, which are implicitly used in the calculation of

d and ~R. We can think of the environmental perturbation d as a statistical potential or “free

energy” −lnp, which is minimized when p is maximized.

Eq 37 can be solved by a standard iterative approach called Expectation Maximization [31].

At each iteration t, the latent variable zt is computed from the previous estimate ŷt� 1 of ŷ, and

then the new parameter estimate ŷt is found by maximizing p(x, zt|θ). Fig 5(c) contains pseu-

docode for this algorithm as applied to our ecological problem, which was also reported previ-

ously in [24].

This algorithm fails to converge at low resource supply levels, because both arguments must

be positive when d is a weighted KL divergence, but ~R0
t can temporarily become negative

under these conditions. To solve this issue, we replaced update step for ~R0
t by

~R0

t a~R0ðR�t Þ þ ð1 � aÞ~R
0

t� 1

where α is a constant rate, equivalent to the “learning rate” in machine learning [31].

Default values of the tolerance δ and learning rate α are set to 10−7 and 0.5, respectively,

which give robust convergence for typical simulation scenarios. They can be adjusted as

optional arguments of the SteadyState method.

This algorithm can be applied to any consumer-resource type model, including models

beyond the MicroCRM framework, with non-substitutable resources [24]. But the enhanced

efficiency of the new approach requires that the optimization problem be convex. In the Com-

munity Simulator package, the algorithm is only implemented for Type-I response with no

metabolic regulation, where convexity is guaranteed. For more complex models, the differen-

tial equations must be numerically integrated using the Propagate method discussed above.

In the tutorial notebook included with the package, we show that the MicroCRM can be

bistable if the externally supplied resources are insufficient to directly support growth of any

consumer species. In this scenario the state with all consumers extinct is a stable equilibrium

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 15 / 18

https://doi.org/10.1371/journal.pone.0230430

of the dynamics, and another stable equilibrium with persisting consumers is also possible that

relies on the metabolic byproducts. In this scenario SteadyState method can find either of

the two equilibria, depending on the initial estimate of ~R0, which can be set by an optional

argument. If this initial condition is sufficiently close to the actual equilibrium state R0 of the

intrinsic resource dynamics, the method ends in the state with the consumers extinct, where

~R0 ¼ R0 ¼ R�. But if the initial condition is not deliberately tuned to be close to R0, we find

that the method typically finds the other state where some consumers survive.

Conclusions

We hope that the Community Simulator will become a valuable resource for the microbial

ecology community. It has already played an important role in our own work. The package ini-

tially facilitated the systematic evaluation of the robustness of results to different modeling

assumptions in a study of the effects of total energy influx on community structure, diversity

and function [24]. More recently, the convex optimization approach has made it possible to

perform more than 100,000 independent simulations in a reinterpretation and extension of

Robert May’s classic work on diversity and stability [32, 33]. We have also employed the pack-

age to reproduce large-scale patterns in microbial biodiversity from the Human Microbiome

Project, Earth Microbiome Project, and similar surveys [34]. Finally, the random matrix

approach implemented in this package is amenable to analytic calculation in the limit of large

numbers of species and resources, using cavity methods from the physics of disordered sys-

tems [35, 36]. It is our belief that the Community Simulator will facilitate the further develop-

ment of these mathematical techniques through efficient testing of new conjectures.

One interesting future direction to explore is integrating the Community Simulator with

methods for directly analyzing Microbiome sequencing data. For example, there has been a

renewed interest in statistical techniques such as Approximate Bayesian Computation (ABC) for

understanding ecology and evolution [37]. In ABC, the need to exactly calculate complicated

likelihood functions—often a prerequisite for many statistical techniques—is replaced with the

calculation of summary statistics and numerical simulations. For this reason, the Community

Simulator Python package is ideally suited to form the backbone of new inference techniques for

trying to related ecological processes to observed abundance patterns in microbial ecosystems.

Availability and requirements

• Project name: Community Simulator

• Project home page: https://github.com/Emergent-Behaviors-in-Biology/community-

simulator

• Operating system(s): Linux or Mac preferred. Parallelization scheme is currently incompat-

ible with Windows, and must be deactivated (set parallel = False when initializing a

plate) for the code to run.

• Programming language: Python 3

• Other requirements: Numpy 1.15+, Pandas 0.23.0+, Matplotlib 2.2.3+, SciPy 1.1.0+.

SteadyState method additionally requires CVXPY 1.0+.

• License: MIT

• Any restrictions to use by non-academics: None

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 16 / 18

https://github.com/Emergent-Behaviors-in-Biology/community-simulator
https://github.com/Emergent-Behaviors-in-Biology/community-simulator
https://doi.org/10.1371/journal.pone.0230430

Acknowledgments

We are grateful to Kirill Korolev, Alvaro Sanchez, and Daniel Segrè for many useful conversa-

tions, and to Matti Gralka for testing cross-platform compatibility of the package. The perfor-

mance evaluation reported in Fig 6 was performed on the Shared Computing Cluster which is

administered by Boston University Research Computing Services.

Author Contributions

Conceptualization: Joshua Goldford, Pankaj Mehta.

Funding acquisition: Pankaj Mehta.

Investigation: Robert Marsland, Wenping Cui.

Software: Robert Marsland.

Supervision: Pankaj Mehta.

Validation: Wenping Cui.

Writing – original draft: Robert Marsland.

Writing – review & editing: Wenping Cui, Pankaj Mehta.

References
1. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue

reveals Earth’s multiscale microbial diversity. Nature. 2017; 551:457. https://doi.org/10.1038/

nature24621 PMID: 29088705

2. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function

and diversity of the healthy human microbiome. Nature. 2012; 486:207. https://doi.org/10.1038/

nature11234

3. Loreau M. Consumers as maximizers of matter and energy flow in ecosystems. The American Natural-

ist. 1995; 145:22. https://doi.org/10.1086/285726

4. Embree M, Liu JK, Al-Bassam MM, Zengler K. Networks of energetic and metabolic interactions define

dynamics in microbial communities. Proceedings of the National Academy of Sciences. 2015;

112:15450. https://doi.org/10.1073/pnas.1506034112

5. Gause GF, Witt AA. Behavior of Mixed Populations and the Problem of Natural Selection. The American

Naturalist. 1935; 69:596. https://doi.org/10.1086/280628

6. MacArthur R. Species Packing and Competitive Equilibrium for Many Species. Theoretical Population

Biology. 1970; 1:1. https://doi.org/10.1016/0040-5809(70)90039-0 PMID: 5527624

7. Levin SA. Community equilibria and stability, and an extension of the competitive exclusion principle.

The American Naturalist. 1970; 104:413. https://doi.org/10.1086/282676

8. Chesson P. MacArthur’s consumer-resource model. Theoretical Population Biology. 1990; 37:26.

https://doi.org/10.1016/0040-5809(90)90025-Q

9. Chase JM. Community assembly: when should history matter? Oecologia. 2003; 136:489. https://doi.

org/10.1007/s00442-003-1311-7 PMID: 12836009

10. Jeraldo P, Sipos M, Chia N, Brulc JM, Dhillon AS, Konkel ME, et al. Quantification of the relative roles of

niche and neutral processes in structuring gastrointestinal microbiomes. Proceedings of the National

Academy of Sciences. 2012; 109:9692. https://doi.org/10.1073/pnas.1206721109

11. Kessler DA, Shnerb NM. Generalized model of island biodiversity. Physical Review E. 2015;

91:042705. https://doi.org/10.1103/PhysRevE.91.042705

12. Vega NM, Gore J. Stochastic assembly produces heterogeneous communities in the Caenorhabditis

elegans intestine. PLoS Biol. 2017; 15:e2000633. https://doi.org/10.1371/journal.pbio.2000633 PMID:

28257456

13. Tilman D. Resource competition and community structure. Princeton University Press; 1982.

14. Chesson P. Mechanisms of maintenance of species diversity. Annual review of Ecology and Systemat-

ics. 2000; 31:343. https://doi.org/10.1146/annurev.ecolsys.31.1.343

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 17 / 18

https://doi.org/10.1038/nature24621
https://doi.org/10.1038/nature24621
http://www.ncbi.nlm.nih.gov/pubmed/29088705
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1086/285726
https://doi.org/10.1073/pnas.1506034112
https://doi.org/10.1086/280628
https://doi.org/10.1016/0040-5809(70)90039-0
http://www.ncbi.nlm.nih.gov/pubmed/5527624
https://doi.org/10.1086/282676
https://doi.org/10.1016/0040-5809(90)90025-Q
https://doi.org/10.1007/s00442-003-1311-7
https://doi.org/10.1007/s00442-003-1311-7
http://www.ncbi.nlm.nih.gov/pubmed/12836009
https://doi.org/10.1073/pnas.1206721109
https://doi.org/10.1103/PhysRevE.91.042705
https://doi.org/10.1371/journal.pbio.2000633
http://www.ncbi.nlm.nih.gov/pubmed/28257456
https://doi.org/10.1146/annurev.ecolsys.31.1.343
https://doi.org/10.1371/journal.pone.0230430

15. Fisher CK, Mehta P. The transition between the niche and neutral regimes in ecology. PNAS. 2014;

111:13111. https://doi.org/10.1073/pnas.1405637111 PMID: 25157131

16. Dickens B, Fisher CK, Mehta P. Analytically tractable model for community ecology with many species.

Physical Review E. 2016; 94:022423. https://doi.org/10.1103/PhysRevE.94.022423 PMID: 27627348

17. Bunin G. Ecological communities with Lotka-Volterra dynamics. Physical Review E. 2017; 95:042414.

https://doi.org/10.1103/PhysRevE.95.042414 PMID: 28505745

18. Barbier M, Arnoldi JF, Bunin G, Loreau M. Generic assembly patterns in complex ecological communi-

ties. Proceedings of the National Academy of Sciences. 2018; 115:2156. https://doi.org/10.1073/pnas.

1710352115

19. Pacheco AR, Moel M, SegrèD. Costless metabolic secretions as drivers of interspecies interactions in

microbial ecosystems. Nature Communications. 2019; 10:103. https://doi.org/10.1038/s41467-018-

07946-9 PMID: 30626871

20. Goldford JE, Lu N, BajićD, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent Simplicity in

Microbial Community Assembly. Science. 2018; 361:469. https://doi.org/10.1126/science.aat1168

PMID: 30072533

21. Muscarella ME, O’Dwyer JP. Species dynamics and interactions via metabolically informed consumer-

resource models. bioRxiv. 2019;518449.

22. Marsland R III, Cui W, Goldford J, Sanchez A, Korolev K, Mehta P. Available energy fluxes drive a tran-

sition in the diversity, stability, and functional structure of microbial communities. PLOS Computational

Biology. 2019; 15:e1006793. https://doi.org/10.1371/journal.pcbi.1006793

23. Mehta P, Cui W, Wang CH, Marsland R III. Constrained optimization as ecological dynamics with appli-

cations to random quadratic programming in high dimensions. Physical Review E. 2018; 99:052111.

https://doi.org/10.1103/PhysRevE.99.052111

24. Marsland III R, Cui W, Mehta P. The Minimum Environmental Perturbation Principle: A new perspective

on niche theory. arXiv. 2019;1901.09673.

25. McKinney W. Data Structures for Statistical Computing in Python. In: van der Walt S, Millman J, editors.

Proceedings of the 9th Python in Science Conference; 2010. p. 51—56.

26. Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python; 2001–. Available

from: http://www.scipy.org/.

27. Hindmarsh AC. ODEPACK, a systematized collection of ODE solvers. Scientific computing. 1983;

p. 55–64.

28. Datta MS, Korolev KS, Cvijovic I, Dudley C, Gore J. Range expansion promotes cooperation in an

experimental microbial metapopulation. Proceedings of the National Academy of Sciences. 2013;

110:7354–7359. https://doi.org/10.1073/pnas.1217517110

29. Diamond S, Boyd S. CVXPY: A Python-Embedded Modeling Language for Convex Optimization. Jour-

nal of Machine Learning Research. 2016; 17:1.

30. Agrawal A, Verschueren R, Diamond S, Boyd S. A Rewriting System for Convex Optimization Prob-

lems. Journal of Control and Decision. 2018; 5:42. https://doi.org/10.1080/23307706.2017.1397554

31. Mehta P, Bukov M, Wang CH, Day AG, Richardson C, Fisher CK, et al. A high-bias, low-variance intro-

duction to machine learning for physicists. Physics Reports. 2019; 810:1. https://doi.org/10.1016/j.

physrep.2019.03.001 PMID: 31404441

32. Cui W, Marsland III R, Mehta P. Diverse communities behave like typical random ecosystems. arXiv.

2019;1904.0261.

33. May R. Will a Large Complex System be Stable? Nature. 1972; 238:413. https://doi.org/10.1038/

238413a0 PMID: 4559589

34. Marsland R III, Cui W, Mehta P. A minimal model for microbial biodiversity can reproduce experimen-

tally observed ecological patterns. Scientific Reports. 2020; 10:3308. https://doi.org/10.1038/s41598-

020-60130-2

35. Advani M, Bunin G, Mehta P. Statistical physics of community ecology: a cavity solution to MacArthur’s

consumer resource model. Journal of Statistical Mechanics. 2018;033406. https://doi.org/10.1088/

1742-5468/aab04e PMID: 30636966

36. Cui W, Marsland III R, Mehta P. The effect of resource dynamics on species packing in diverse ecosys-

tems. arXiv. 2019;191102595.

37. Csilléry K, Blum MG, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice.

Trends in Ecology & Evolution. 2010; 25:410. https://doi.org/10.1016/j.tree.2010.04.001

PLOS ONE The Community Simulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0230430 March 24, 2020 18 / 18

https://doi.org/10.1073/pnas.1405637111
http://www.ncbi.nlm.nih.gov/pubmed/25157131
https://doi.org/10.1103/PhysRevE.94.022423
http://www.ncbi.nlm.nih.gov/pubmed/27627348
https://doi.org/10.1103/PhysRevE.95.042414
http://www.ncbi.nlm.nih.gov/pubmed/28505745
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1038/s41467-018-07946-9
https://doi.org/10.1038/s41467-018-07946-9
http://www.ncbi.nlm.nih.gov/pubmed/30626871
https://doi.org/10.1126/science.aat1168
http://www.ncbi.nlm.nih.gov/pubmed/30072533
https://doi.org/10.1371/journal.pcbi.1006793
https://doi.org/10.1103/PhysRevE.99.052111
http://www.scipy.org/
https://doi.org/10.1073/pnas.1217517110
https://doi.org/10.1080/23307706.2017.1397554
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
http://www.ncbi.nlm.nih.gov/pubmed/31404441
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
http://www.ncbi.nlm.nih.gov/pubmed/4559589
https://doi.org/10.1038/s41598-020-60130-2
https://doi.org/10.1038/s41598-020-60130-2
https://doi.org/10.1088/1742-5468/aab04e
https://doi.org/10.1088/1742-5468/aab04e
http://www.ncbi.nlm.nih.gov/pubmed/30636966
https://doi.org/10.1016/j.tree.2010.04.001
https://doi.org/10.1371/journal.pone.0230430

